Termination w.r.t. Q of the following Term Rewriting System could be proven:

Q restricted rewrite system:
The TRS R consists of the following rules:

div(0, y) → 0
div(x, y) → quot(x, y, y)
quot(0, s(y), z) → 0
quot(s(x), s(y), z) → quot(x, y, z)
quot(x, 0, s(z)) → s(div(x, s(z)))

Q is empty.


QTRS
  ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

div(0, y) → 0
div(x, y) → quot(x, y, y)
quot(0, s(y), z) → 0
quot(s(x), s(y), z) → quot(x, y, z)
quot(x, 0, s(z)) → s(div(x, s(z)))

Q is empty.

Using Dependency Pairs [1,13] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

QUOT(x, 0, s(z)) → DIV(x, s(z))
QUOT(s(x), s(y), z) → QUOT(x, y, z)
DIV(x, y) → QUOT(x, y, y)

The TRS R consists of the following rules:

div(0, y) → 0
div(x, y) → quot(x, y, y)
quot(0, s(y), z) → 0
quot(s(x), s(y), z) → quot(x, y, z)
quot(x, 0, s(z)) → s(div(x, s(z)))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ DependencyPairsProof
QDP
      ↳ EdgeDeletionProof

Q DP problem:
The TRS P consists of the following rules:

QUOT(x, 0, s(z)) → DIV(x, s(z))
QUOT(s(x), s(y), z) → QUOT(x, y, z)
DIV(x, y) → QUOT(x, y, y)

The TRS R consists of the following rules:

div(0, y) → 0
div(x, y) → quot(x, y, y)
quot(0, s(y), z) → 0
quot(s(x), s(y), z) → quot(x, y, z)
quot(x, 0, s(z)) → s(div(x, s(z)))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We deleted some edges using various graph approximations

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
QDP
          ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

QUOT(s(x), s(y), z) → QUOT(x, y, z)
QUOT(x, 0, s(z)) → DIV(x, s(z))
DIV(x, y) → QUOT(x, y, y)

The TRS R consists of the following rules:

div(0, y) → 0
div(x, y) → quot(x, y, y)
quot(0, s(y), z) → 0
quot(s(x), s(y), z) → quot(x, y, z)
quot(x, 0, s(z)) → s(div(x, s(z)))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


QUOT(s(x), s(y), z) → QUOT(x, y, z)
The remaining pairs can at least be oriented weakly.

QUOT(x, 0, s(z)) → DIV(x, s(z))
DIV(x, y) → QUOT(x, y, y)
Used ordering: Combined order from the following AFS and order.
QUOT(x1, x2, x3)  =  QUOT(x1)
s(x1)  =  s(x1)
0  =  0
DIV(x1, x2)  =  DIV(x1)

Lexicographic Path Order [19].
Precedence:
[QUOT1, 0, DIV1] > s1


The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ QDPOrderProof
QDP
              ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

QUOT(x, 0, s(z)) → DIV(x, s(z))
DIV(x, y) → QUOT(x, y, y)

The TRS R consists of the following rules:

div(0, y) → 0
div(x, y) → quot(x, y, y)
quot(0, s(y), z) → 0
quot(s(x), s(y), z) → quot(x, y, z)
quot(x, 0, s(z)) → s(div(x, s(z)))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


QUOT(x, 0, s(z)) → DIV(x, s(z))
The remaining pairs can at least be oriented weakly.

DIV(x, y) → QUOT(x, y, y)
Used ordering: Combined order from the following AFS and order.
QUOT(x1, x2, x3)  =  x2
0  =  0
s(x1)  =  s
DIV(x1, x2)  =  x2

Lexicographic Path Order [19].
Precedence:
0 > s


The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ QDPOrderProof
            ↳ QDP
              ↳ QDPOrderProof
QDP
                  ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

DIV(x, y) → QUOT(x, y, y)

The TRS R consists of the following rules:

div(0, y) → 0
div(x, y) → quot(x, y, y)
quot(0, s(y), z) → 0
quot(s(x), s(y), z) → quot(x, y, z)
quot(x, 0, s(z)) → s(div(x, s(z)))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [13,14,18] contains 0 SCCs with 1 less node.